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Figure 1. ESR spectral changes occurring during the reaction of 
(C5Hj)2NbH2 with isobutylene at (a) -70°, (b) -37°, (c) -10°, (d) 
25°, and (e) on standing. For clarity only selected lines corresponding 
to mi = 1A, \ , and 5/2 of the decet Nb splitting are shown in (b), (c), 
and (d). Sweep widths are the same in all the spectra. Proton NMR 
field markers are in kHz. In (d) and (e) lines marked with open circles 
are due to species X. 
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Figure 2. ESR spectrum obtained during the thermal reaction of 
Cp2NbH3 and isobutylene at 25° in cyclopropane-benzene solution. 
Two species clearly present are IIIb and X, in addition to minor 
amounts of other niobium(lV) species. 

the information obtained from these ESR studies will pro
vide us with optimum conditions for its eventual isolation, 
either as a crystalline substance or in an inert matrix.16 
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A Synthesis of </,/-Muscone from Cyclododecanone 

Sir: 

We wish to disclose here an efficient synthesis of d,l-
muscone (V) from the readily available cyclododecanone 
(I)." The ring expansion sequence employs consecutive two-
and one-carbon ring homologations and allows the con
trolled introduction of substituents on the final macrocycle. 
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Our approach generates cyclotetradecenone (III), which 
we succeeded in obtaining in 70% yield as a 1:1 a,0:0,y 
mixture2 from the C12 ketone by hot aqueous hydrochloric 
acid hydrolysis of the known reaction product II3 of 1-pyr-
rolidinocyclododecene with ethyl propiolate. Treatment of 
the enone mixture with triethylsilane in refluxing glyme 
containing a catalytic amount of chloroplatinic acid afford
ed 1-triethylsiloxycyclotetradecene (III)4 (92%; vmax 
1675"1 (C=C); NMR 8 4.42 quintet, J = 7.0 Hz, 1 H; 2.0, 
b s, 4 H). Addition of dichlorocarbene (sodium trichloroa-
cetate (2 equiv) in refluxing glyme-tetrachloroethylene (1: 
4) for 18 hr, followed by aqueous 1 N hydrochloric acid-
tetrahydrofuran (1 hr, room temperature), gave 2-chloro-
2-cyclopentadecenone (V) in 66% yield (j-max 1700, 1625 
cm"1; NMR 8 6.83, t, J = 7.0 Hz, 1 H; 2.60, m, 4 H). Con
jugate addition of dimethylcopper lithium in ether (—10°, 
30 min), followed by saturated ammonium chloride workup 
and subsequent chromium(II) perchlorate reduction of the 
resulting a-chloro ketone in dimethyl formamide5 yielded 
rf,/-muscone (VI) as a light yellow oil (89%) which was 
identical with an authentic sample6 in spectral and analyti
cal characteristics. The overall yield of if,/-muscone from 
cyclododecanone is about 36%. 

Sr O 

i Ii m 

IV V VI 

This synthesis demonstrates that, as we anticipated, rapid 
equilibration of an a,/3-ff,y mixture of unsaturated ketones 
takes place under the platinum-catalyzed silylation condi
tions,7 thus allowing the clean formation of IV from III. 
Further, the dichlorocyclopropanation of enol silyl ethers 
(which can often be prepared regiospecifically), followed by 
hydrolysis, offers an efficient alternative to current meth
ods8 for the transformation of ketones into specifically 
homologated a-chloroenones. It should be noted that cyclo-
pentadecenone derivatives are known to be equilibrated to 
mixtures rich in the 0,y isomer.9 Thus, the a-chloro substit-
uent helps to stabilize the unsaturated Ci5 ketone in the 
a,/3-enone configuration required for conjugate addition. 
The compatibility of the a-chloroenone system with alkyl 
copper reagents is due to the fact that the chlorine becomes 
a relatively unreactive vinyl chloride in the enolate resulting 
from 1,4-addition.10 
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Correlation between Acidities of Carboxylic Acids and 
Core Ionization Potentials 

Sir: 

It has recently been shown by Martin and Shirley1 and 
by Davis and Rabalais2 that there is a strong correlation be
tween core-electron binding energies and proton affinities. 
For a series of alcohols, Martin and Shirley have found that 
the change in oxygen Is binding energy from one alcohol to 
the next in the series is nearly identical with the change in 
proton affinity. The reason for this remarkable result is that 
the removal of an electron from the oxygen is electrically 
equivalent to the addition of a proton at the same site. 

Martin and Shirley also suggested that there should be a 
correlation between the oxygen Is ionization potentials and 
the gas-phase acidities of these compounds and noted that 
the results obtained by Brauman and Blair3-4 on a series of 
alcohols are in accord with their expectation. No quantita
tive comparison was possible since only relative acidities 
were measured by Brauman and Blair. The acidities for al
cohols in aqueous phase are the reverse of what they are in 
the gas phase because of solvent effects. The aqueous-phase 
acidities of the alcohols do not, therefore, correlate in the 
expected way with the core-electron ionization potentials. 

If, however, we direct our attention to substances in 
which the relative aqueous-phase acidity is largely deter
mined by the charge distribution in the original molecule 
(i.e., by inductive effects) rather than by either solvent or 
internal polarization effects, we may expect to find acid 
strength increasing with increasing core-electron binding 
energy. An electrostatic potential from which it is relatively 
difficult to remove an electron is one from which it is rela
tively easy to remove a proton. 

In the course of some research unrelated to this problem, 
we have measured the ionization potentials for iodine 3d 
electrons in the compounds RI (R = CH3, CF3, C6H5, and 
C6F5). We compare these here with the acidities of the cor-
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